skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wen, Jianming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Entangled multiphoton sources are essential for both fundamental tests of quantum foundations and building blocks of contemporary optical quantum technologies. While efforts over the past three decades have focused on creating multiphoton entanglement through multiplexing existing biphoton sources with linear optics and postselections, our work presents a groundbreaking approach. We observe genuine continuous-mode time-energy-entangled W-class triphotons with an unprecedented production rate directly generated through spontaneous six-wave mixing (SSWM) in a four-level triple-Λ atomic vapor cell. Using electromagnetically induced transparency and coherence control, our SSWM scheme allows versatile narrowband triphoton generation with advantageous properties, including long temporal coherence and controllable waveforms. This advancement is ideal for applications like long-distance quantum communications and information processing, bridging single photons and neutral atoms. Most importantly, our work establishes a reliable and efficient genuine triphoton source, facilitating accessible research on multiphoton entanglement. 
    more » « less
  3. We report an experimental demonstration of anti-parity-time symmetric optical four-wave mixing in thermal rubidium vapor, where the propagation of probe and stokes fields in a double-Λ scheme is governed by a non-Hermitian Hamiltonian. We are particularly interested in studying quantum intensity correlations between the two fields near the exceptional point, taking into account loss and accompanied Langevin noise. Our experimental measurements of classical four-wave mixing gain and the associated two-mode relative-intensity squeezing are in reasonable agreement with the theoretical predictions. 
    more » « less
  4. By coherently combining advantages while largely avoiding limitations of two mainstream platforms, optical hybrid entanglement involving both discrete and continuous variables has recently garnered widespread attention and emerged as a promising idea for building heterogenous quantum networks. In contrast to previous results, here we propose a new scheme to remotely generate hybrid entanglement between discrete polarization and continuous quadrature optical qubits heralded by two-photon Bell-state measurement. As a novel nonclassical light resource, we further use it to discuss two examples of ways—entanglement swapping and quantum teleportation—in which quantum information processing and communications could make use of this hybrid technique. 
    more » « less
  5. Abstract The promise of universal quantum computing requires scalable single‐ and inter‐qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate operations. Alternatively, photons are well decoupled from the environment and have advantages of speed and timing for quantum computing. Photonic systems have already demonstrated capability for solving specific intractable problems like Boson sampling, but face challenges for practically scalable universal quantum computing solutions because it is extremely difficult for a single photon to “talk” to another deterministically. Here, a universal distributed quantum computing scheme based on photons and atomic‐ensemble‐based quantum memories is proposed. Taking the established photonic advantages, two‐qubit nonlinear interaction is mediated by converting photonic qubits into quantum memory states and employing Rydberg blockade for the controlled gate operation. Spatial and temporal scalability of this scheme is demonstrated further. These results show photon‐atom network hybrid approach can be a potential solution to universal distributed quantum computing. 
    more » « less
  6. We demonstrate a new, to the best of our knowledge, kind of self-pulsation in a microcavity Brillouin laser. This specific self-pulsation is generated by the interplay between the Brillouin lasing and the thermo-optic effect in an optical microcavity. Intriguingly, the self-pulsation behaviors are simultaneously present in both forward input pump and backward Brillouin lasing emission. By developing a coupled-mode theory, our numerical simulations display an excellent agreement with the experimental results. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)